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Randomness-driven quantum phase transition in bond-alternating Haldane chain
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Effects of bond randomness on the spin-gapped ground state of the spin-1 bond-alternating
antiferromagnetic Heisenberg chain are discussed. By using the loop cluster quantum Monte
Carlo method, we investigate the stability of topological order in terms of the recently proposed
twist order parameter [M. Nakamura and S. Todo: Phys. Rev. Lett. 89 (2002) 077204]. It is
observed that the dimer phases as well as the Haldane phase of the spin-1 Heisenberg chain are
robust against weak randomness, though the VBS-like topological order in the latter phase is
destroyed by introducing disorder stronger than the critical value.
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Disorder effects on low-dimensional quantum magnets
have been investigated extensively in recent theoreti-
cal studies. Especially, impurity effects on spin-gapped
Heisenberg antiferromagnets1 have aroused much inter-
est in relation to the impurity-induced antiferromagnetic
long-range order observed experimentally in real mate-
rials.2 It has been established by the recent numerical
simulations3 that in two dimensions or higher, there are
two classes of disorder, which affect spin-gapped states in
essentially different ways. The site dilution and the bond
dilution are representatives of each class. The former
induces localized moments around the impurity sites.
There exist strong correlations between such effective
spins retaining the staggeredness with respect to the
original lattice, and therefore the antiferromagnetic long-
range order emerges by an infinitesimal concentration of
dilution. In the bond-dilution case, on the other hand,
localized moments are always induced in pairs and they
reform a singlet by the antiferromagnetic interactions
through the two- or three-dimensional shortest paths as
long as the concentration of bond dilution is smaller than
a finite critical value.

In one-dimensional systems, since quantum fluctua-
tions are much stronger than in higher dimensions, novel
quantum critical phenomena are observed under disor-
der in the magnitude of coupling constants (bond ran-
domness). Theoretically, the decimation renormalization
group (DRG) approaches have achieved great success to
predict rich physics, such as the random-singlet (RS)
phase for the spin- 1

2
chains.4–6 Recently, this technique

has been extended to the higher-spin cases,7–10 where
two of the main debates are on the robustness of the Hal-
dane gap11 against disorder and on the presence of the
spin-1 RS phase. A number of numerical studies have also
been done12–15 in order to establish a quantitative phase
diagram. However, this problem has not been made clear
enough yet. One of the main difficulties in simulating ran-
dom quantum systems is the extremely wide energy scale
to be taken into account. Another difficulty is the lack
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of appropriate physical quantity to discuss effectively the
randomness-driven critical behavior.

In this Letter, we report the results of our quantum
Monte Carlo (QMC) simulation on the bond-alternating
Haldane chain with bond randomness. By making use
of the recently-proposed twist order parameter16 to-
gether with a novel numerical technique for simulating
the ground state in the framework of the loop cluster
QMC method,17–19 we show that the difficulties men-
tioned above can be overcome and thus we successfully
establish the quantitative ground-state phase diagram.

We start with the following Hamiltonian for the anti-
ferromagnetic Heisenberg chain:

H =
L

∑

i=1

Ji Si · Si+1 , (1)

where Si is a spin-1 operator at site i, L the system size,
and periodic boundary conditions are imposed.

For the bond-alternating model without disorder,
where the coupling constants {Ji} are given by Ji =
1 − (−1)iδ parameterized by the strength of bond alter-
nation (or forced dimerization) δ, the ground-state phase
diagram has been discussed in terms of the valence-bond
solid (VBS) picture.20 For spin size S, the pattern of
the valence bonds (m,n), where m (n = 2S − m) de-
notes number of effective singlet bonds on the odd (even)
bonds, changes from (0, 2S) to (2S, 0) successively as δ
is increased from −1 to 1, meaning the existence of 2S
quantum phase transitions.21 Each VBS state has a topo-
logical hidden order, which is characterized by the string
order parameter.22

On the other hand, Affleck and Lieb studied the Hal-
dane’s conjecture by the Lieb-Schultz-Mattis (LSM) ar-
gument.23 Although the relation between the VBS pic-
ture and the LSM argument has not been fully under-
stood for a long time, Nakamura and Todo have recently
shown that the ground-state expectation value of the uni-
tary operator appearing in the LSM argument

zL = 〈exp[i
2π

L

L
∑

j=1

jSzj ]〉 (2)
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plays a role of an order parameter, which characterizes
the VBS states.16 The unitary operator in Eq. (2) ro-
tates the spins about the z axis with a relative rotation
angle 2π/L and thus it generates a low-lying excited state
with excitation energy of O(L−1). Since the twist order
parameter (2) measures the overlap between the ground
state and such a twisted excited state, |zL| 6= 1 in the
thermodynamic limit evidences the existence of gapless
low-lying excitations or a degeneracy in the ground state.
Furthermore, it is shown that in the (m,n) VBS phase,
zL converges to (−1)m for L → ∞. We will see below
that the twist order parameter works fairly well even in
the presence of disorder.

In what follows, we consider two different random dis-
tributions for the couplings {Ji} in Eq. (1). The first one
is the uniform distribution, where the coupling constants
are distributed uniformly according to

P (Ji) =

{

1/2W if |Ji − 1 + (−1)iδ| ≤W

0 otherwise.
(3)

Here 0 ≤ W ≤ 1 − |δ| must be fulfilled, otherwise ferro-
magnetic bonds could appear in the system. The second
distribution is given by

Ji = [1 − (−1)iδ] ti (4)

with quenched random numbers ti, obeying the power-

law distribution:4, 5, 24

P (ti) =

{

R−1t
−1+1/R
i if 0 < ti ≤ 1

0 otherwise,
(5)

with a non-negative parameter R, where the R → 0 limit
corresponds to the non-random case (ti = 1 for all i).
Note that at δ = 0 the uniform distribution [Eq. (3)] with
W = 1 and the power-law one [Eqs. (4) and (5)] with
R = 1 are equivalent with each other besides a trivial
scaling factor; Ji’s are distributed uniformly between 0
and a finite cutoff.

The present model (1) can be simulated efficiently by
the loop cluster QMC method17, 18 even in the presence
of randomness. However, it should be pointed out that
the loop cluster method, which is based on the Suzuki-
Trotter path-integral representation, works indeed at a
finite temperature. Since the ground-state properties are
mainly concerned in the present study, an effective ex-
trapolation scheme, which we will explain below, for tak-
ing the zero-temperature limit is essential.

We notice the fact that the ground state of the nearest-
neighbor antiferromagnetic Heisenberg chain of finite and
even number of spins is singlet, and there is a finite gap
above the ground state. In the path-integral representa-
tion the inverse of the gap is given by the correlation
length along the imaginary-time axis. Since the loop size
is directly related to the correlation length in the real-
space as well as the imaginary-time directions,17, 18 the
system can not distinguish whether the temperature is
finite or zero, if no loops wrap around the lattice in the
imaginary-time direction. In other words, the winding
number of the loops in the imaginary-time direction can
be used as a good measure for the convergence to the
ground state.
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Fig. 1. δ-dependence of the twist order parameter zL for the spin-
1

2
system with R = 0.5. At δ = 0, zL is zero irrespective of the

system size, while it converges to ±1 for δ 6= 0.

Although there exist several ways to implement the
above idea as a ground-state QMC algorithm,19, 25 we
employ the following in the present study. We start with
a certain temperature. During the thermalization Monte
Carlo sweeps, the winding number of the loops is mon-
itored. If one or more loops wrap around the system in
the imaginary-time direction, we double the inverse tem-
perature. This procedure will automatically adjust the
simulation temperature so that the system will be at the
ground state effectively.

Before jumping into the spin-1 system, we discuss
briefly the phase diagram of the spin- 1

2
system, for which

the effects of disorder on this system have been well es-
tablished. The ground state of the non-bond-alternating
spin- 1

2
chain without disorder is critical. By introduc-

tion of infinitesimal randomness, the system is driven
to the RS phase, where there is also no excitation gap,
but the correlation function decays with a different ex-
ponent from that of the non-random system.5 The RS
phase is characterized by an infinite dynamical expo-
nent, i.e. a logarithmic scaling of the length and energy
scales. As a result, the uniform susceptibility diverges as
χ ∼ 1/T log2 T at low temperatures.26

The RS phase is unstable against a bond alternation.
The real-space correlation becomes short ranged immedi-
ately, though the spin gap remains vanished up to a finite
strength of bond alternation.6, 26 This phase is referred
to as the quantum Griffiths (QG) phase, where the uni-
form susceptibility obeys a power low (χ ∼ T−γ) at low
temperatures with a non-universal exponent γ varying
with δ.

In Fig. 1, the twist order parameter is plotted as a
function of δ for the spin- 1

2
chain with R = 0.5 (power-

law distribution). The twist order parameter with dif-
ferent system sizes crosses at δ = 0 clearly. Note that
in the random system, the translational and the parity
symmetries are both broken in each sample, and thus
zL does not necessarily become zero at δ = 0. However,
one sees in Fig. 1 that the symmetries are restored af-
ter the random average is taken. For a non-zero δ, the
twist order parameter rapidly converges to ±1, though
there extend the gapless QG phases at the both sides of
the RS point.6, 26 The present results demonstrate clearly
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Fig. 2. Ground-state phase diagram of the spin-1 chain with the
uniform random-bond distribution. Along the δ = 0 line, the
Haldane phase survives up to W = 1.

that the twist order parameter zL is not affected by the
QG singularity, and thus it is an effective tool to analyze
the RS criticality.

In contrast to the spin- 1
2

chain, the non-bond-
alternating spin-1 Haldane system without disorder has
a finite gap and a finite correlation length.11 By the pre-
vious DRG studies,7, 8 it is predicted that the Haldane
state is stable against weak disorder, while there occurs
a quantum phase transition to the spin-1 RS phase at
a critical strength of randomness. In the previous QMC
analysis14 on the model with uniform random-bond dis-
tribution [Eq. (3)], where the uniform susceptibility and
the string order parameter was mainly investigated along
the δ = 0 line, it was indicated that the quantum phase
transition occurs at W ≃ 0.95 from the Haldane phase
to the RS one. In the present calculation, however, the
twist order parameter decreases with increasing the sys-
tem size in the whole range of W (0 ≤ W ≤ 1), and
tends to converge to -1 without showing any crossing,
which indicates that the Haldane ((1,1) VBS) phase is
stable in the whole range of W .

This can be seen more clearly in the δ-W phase di-
agram shown in Fig. 2. The phase boundaries are ob-
tained from the crossing point of the twist order param-
eter with different system sizes (L = 8 · · · 64). For small
δ, where the Haldane phase existing at |δ| < 0.25997(3)
forW = 016 shrinks gradually, the phase diagram [Fig. 2]
agrees qualitatively with the one predicted by the DRG
analysis.9 However, the phase boundary between the Hal-
dane (1,1) and the dimer (2,0) phases (solid line) merges
with the parameter boundary δ + W = 1 (dashed line)
at δ ≃ 0.1, and does not reach δ = 0 even at W = 1,
meaning there is no spin-1 RS phase in the model with
the uniform random-bond distribution.

Next, we examine the other random-bond distribution,
i.e., the power-law distribution [Eqs. (4) and (5)]. As al-
ready mentioned, the power-law distribution with R = 1
is equivalent to the uniform one with W = 1, and thus it
is expected that the Haldane phase is stable at least up to
R = 1 also for the former case. However, for the power-
law distribution one can consider further strong disorder
(R > 1), i.e. a wider distribution in a logarithmic scale,
by which the Haldane phase might be broken.24
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Fig. 3. Scaling plot of the distribution function of the local
susceptibility at the RS point (R, δ) = (0.5, 0.2). Inset: δ-
dependence of the twist order parameter for R = 0.5 (crosses,
squares, and triangles for L = 8, 16 and 32, respectively.)

In the inset of Fig. 3, the twist order parameter is
plotted as a function of δ in the weak randomness regime
(R = 0.5). As one can see, for δ > 0.2, the twist order pa-
rameter increases as the system size increases and tends
to converge to +1. We identify this phase as the dimer
(2,0) phase. On the other hand, zL tends to converge to
-1 for δ < 0.2, indicating the Haldane (1,1) phase.

At the crossing point δ ≃ 0.2, a quantum phase tran-
sition occurs, and the transition is expected to belong
to the spin- 1

2
RS universality class.9 In order to confirm

this prediction, we measured the distribution of the local
susceptibility

χloc,i = β〈m2
i 〉 =

∫ β

0

dτ〈Szi (0)Szi (τ)〉 (6)

at the critical point (R, δ) = (0.5, 0.2). As seen in Fig. 3,
the distribution function of the logarithm of local sus-
ceptibility is scaled fairly well by assuming a logarithmic
scaling form, P (logχloc) ≃ f̃(logχloc/L

ψ) with ψ = 0.42.
This is consistent with the previous DRG prediction for
the RS phase,5 though the value of the exponent ψ is
slightly smaller than the predicted value (ψ = 1/2). This
is a further support of applying the twist order param-
eter to the randomness-driven quantum phase transi-
tions. Repeating similar analyses, we obtain the whole
δ-R phase diagram of the random Haldane chain with
the power-law distribution [Fig. 4].

Although for small value of R the phase diagram for
the power-law distribution is similar to Fig. 2, the over-
all shape of the phase boundaries indicates the existence
of the multi-critical point, where the two critical lines
merge with each other at a finite value of R. To locate
the multi-critical point, we calculate zL for several sys-
tem sizes (L = 16 · · ·64) along the δ = 0 line. The re-
sults for 0.9 ≤ R ≤ 1.2 is shown in Fig. 5, where the
data with different system sizes crosses at Rc ≃ 1.05
clearly. Thus, we conclude there exists a multi-critical
point at (R, δ) = (1.05, 0), which is indicated by a solid
square in Fig. 4. Below the multi-critical point the Hal-
dane phase survives, though the spin gap vanishes at a
certainR (< Rc), where a crossover from the gapped Hal-
dane phase to the gapless Haldane (or QG) one occurs. In
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Fig. 4. Ground-state phase diagram of the spin-1 chain with the
power-law random-bond distribution. The multi-critical point is
indicated by a filled square.

the case of uniform distribution (3), the crossover is ob-
served at W ≃ 0.7,26 while we have not yet examined it
for the power-law distribution. For R > Rc, on the other
hand, the twist order parameter is expected to converge
to a non-trivial finite value in the thermodynamic limit,
where the spin-1 RS phase is realized.7–9

To summarize, we reported the results of our QMC
simulations on the bond-alternating random Haldane
chain. By introducing the ground-state loop cluster QMC
method and the twist order parameter, we have success-
fully calculated the precise ground-state phase diagram.
Especially, we demonstrated that the twist order param-
eter, introduced originally for the pure spin chains, is
effective also for the random spin chains. Indeed, it is
shown that the behavior of the twist order parameter
observed in the present study can be discussed more di-
rectly in terms of the numerical DRG approach, in which
one can calculate the topological order parameter for an
approximate VBS-like ground state explicitly.27

For the uniform distribution, the present result, i.e.
the absence of the spin-1 RS phase, does not agree with
the previous finite-temperature QMC result, in which a
multi-critical point was suggested.14 A possible reason
of the disagreement is that the finite-temperature QMC
method might easily fail to take into account rare and
low energy scale but very strong correlations, which are
essential in the random spin systems. On contrary, in the
present ground-state algorithm, the simulation temper-
ature is automatically adjusted according to the mag-
nitude of the gap of each random sample, so that the
physical quantity at the zero temperature is calculated
at an optimal cost. This algorithm is quite useful for sim-
ulating not only random systems but also those without
disorder.19

For the power-law distribution, on the other hand, we
established the phase diagram with a multi-critical point,
whose location was also determined accurately by using
the twist order parameter. The phase diagram we ob-
tained agrees qualitatively with the recent DRG predic-
tion,9 and thus the present results strongly support the
validity of the DRG analysis for the spin-1 systems.
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